Blurred Shape Model for binary and grey-level symbol recognition
نویسندگان
چکیده
Many symbol recognition problems require the use of robust descriptors in order to obtain rich information of the data. However, the research of a good descriptor is still an open issue due to the high variability of symbols appearance. Rotation, partial occlusions, elastic deformations, intra-class and inter-class variations, or high variability among symbols due to different writing styles, are just a few problems. In this paper, we introduce a symbol shape description to deal with the changes in appearance that these types of symbols suffer. The shape of the symbol is aligned based on principal components to make the recognition invariant to rotation and reflection. Then, we present the Blurred Shape Model descriptor (BSM), where new features encode the probability of appearance of each pixel that outlines the symbols shape. Moreover, we include the new descriptor in a system to deal with multi-class symbol categorization problems. Adaboost is used to train the binary classifiers, learning the BSM features that better split symbol classes. Then, the binary problems are embedded in an Error-Correcting Output Codes framework (ECOC) to deal with the multi-class case. The methodology is evaluated on different synthetic and real data sets. State-of-the-art descriptors and classifiers are compared, showing the robustness and better performance of the present scheme to classify symbols with high variability of appearance. 2009 Elsevier B.V. All rights reserved.
منابع مشابه
Handwritten Symbol Recognition by a Boosted Blurred Shape Model with Error Correction
One of the major difficulties of handwriting recognition is the variability among symbols because of the different writer styles. In this paper we introduce the boosting of blurred shape models with error correction, which is a robust approach for describing and recognizing handwritten symbols tolerant to this variability. A symbol is described by a probability density function of blurred shape...
متن کاملMulti-class Binary Object Categorization Using Blurred Shape Models
The main difficulty in the binary object classification field lays in dealing with a high variability of symbol appearance. Rotation, partial occlusions, elastic deformations, or intra-class and inter-class variabilities are just a few problems. In this paper, we introduce a novel object description for this type of symbols. The shape of the object is aligned based on principal components to ma...
متن کاملMulti-class Binary Symbol Classification with Circular Blurred Shape Models
Multi-class binary symbol classification requires the use of rich descriptors and robust classifiers. Shape representation is a difficult task because of several symbol distortions, such as occlusions, elastic deformations, gaps or noise. In this paper, we present the Circular Blurred Shape Model descriptor. This descriptor encodes the arrangement information of object parts in a correlogram st...
متن کاملHand Drawn Symbol Recognition by Blurred Shape Model Descriptor and a Multiclass Classifier
In the document analysis field, the recognition of handwriting symbols is a difficult task because of the distortions due to hand drawings and the different writer styles. In this paper, we propose the Blurred Shape Model to describe handwritten symbols, and the use of Adaboost in an Error Correcting Codes framework to deal with multi-class categorization handwriting problems. It is a robust ap...
متن کاملSymbol Recognition by Multi-class Blurred Shape Models
One of the main difficulties in the document analysis field is the recognition of handwriten documents. High variability among symbols because of different writer styles, different sizes, shape deformations, noise, or intensity changes are just a few problems. In handwriting recognition language models can be used to assist the recognition process. However, in Graphics Recognition hand drawn sy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Pattern Recognition Letters
دوره 30 شماره
صفحات -
تاریخ انتشار 2009